CategoriesDigital learningEducation

Big Data in Education - Learning Outcomes

Written for Lilab.eu

BigDatainEducation

The first episode in of Big Data in Education introduced the opportunities arising by programmatically collecting and analysing educational data. The second episode detailed the Dimensions of Education Data, the so-called input space of the Big Data in Education. As anticipated before, this session talks about learning outcomes measurement, or namely how to transform learning performance and assessment indicators to take into account when deploying Big Data techniques in Education.

But if we now know where to collect data, why bother about the output at all? The output space is as important as the input as most of the supervised Big Data techniques consists in model or pattern discovering, through which is possible to perform automatic predictions or classifications.

...

Continue the reading at lilab.eu

Published by Daniele Di Mitri

Daniele Di Mitri is a professor of Multimodal Learning Technologies at the German University of Digital Science. At the German UDS, he leads the research group "Augmented Feedback" and coordinates the master's in Advanced Digital Realities.  He is an associated researcher at the DIPF - Leibniz Institute for Research and Information in Education and a lecturer at the Goethe University of Frankfurt, Germany. Daniele Di Mitri received his PhD in Learning Analytics and Wearable Sensor Support from the Open University of the Netherlands. His current research focuses on developing AI-driven, multimodal learning technologies to enhance digital education. It aims to create innovative, responsible solutions that improve learning experiences through advanced feedback systems and ethical integration of technology. He is a "Johanna Quandt Young Academy" fellow and was elected "AI Newcomer 2021" at the KI Camp by the German Informatics Society. He is a member of the CrossMMLA, a special interest group of the Society for Learning Analytics Research, and the chair of the special interest group on AI for Education of the European Association for Technology-Enhanced Learning.

Leave a Reply

Your email address will not be published. Required fields are marked *